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Abstract

Flow past and within an isolated permeable spheroid directed along its axis of symmetry is studied. The

flow velocity field is solved using the Stokes creeping flow equations governing the fluid motion outside the

spheroid, and the Darcy equation within the spheroid. Expressions for the hydrodynamic resistance ex-

perienced by oblate and prolate spheroids are derived and analyzed. The limiting cases of permeable cir-

cular disks and elongated rods are examined. It is shown that the spheroid�s resistance varies significantly

with its aspect ratio and permeability, expressed via the Brinkman parameter.
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1. Introduction

Flows past particles of various shapes, such as rigid spheres, spheroids, and cylinders have been
studied quite extensively. A wide variety of analytical and numerical methods had been used to
obtain solutions for a broad range of geometric and flow parameters. For excellent compilations
of these results, the reader is referred to the monographs by Happel and Brenner (1983) and Clift
et al. (1978). These books, however, do not consider the flows past porous particles. Indeed, going
through the literature, one finds very little information on this subject as compared to flow past
solid bodies. This is in spite of the fact that porous particles are widely used in technology, in
particular in chemical process industries. Porous pellets are used extensively in catalytic reactors.
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It has been shown that convective transport in these particles might enhance effectiveness factors
and improve selectivity of chemical reactors (Nir and Pismen, 1977). Porous particles are fre-
quently found in the atmosphere and in other environmental systems, where they are normally
formed by vapor condensation–coagulation processes (Pruppacher and Klett, 1978).

Flow inside porous bodies is usually described by the Darcy equation (Adler, 1992). Such a
description of the flow is often combined with the Navier–Stokes equations for modeling the flow
outside the bodies. To close the problem, one requires that these two flow fields satisfy appro-
priate boundary conditions formulated at the surface of the porous body. Such conditions con-
stitute a controversial subject, extensively discussed in the literature (see below a discussion on this
matter). One principal difficulty in rigorous formulation of these conditions stems from the nature
of the Darcy equation, which has no shear stress tensor associated with it. One way to overcome
this difficulty is to use the Brinkman equation instead, which is endowed by the viscous stress
tensor (Scheidegger, 1960).

Several studies of the flow field within and outside porous spheres are limited mainly to low
Reynolds numbers. Joseph and Tao (1964) and Sutherland and Tan (1970) calculated the flow
field, described by Darcy�s law, near and within a permeable sphere. Joseph and Tao (1964) used
the no-slip condition for the fluid at the surface of the sphere, with the result that the tangential
velocity component is generally not continuous at the surface. On the other hand, Sutherland and
Tan (1970) assumed continuity of the tangential velocity component at the sphere surface. Ooms
et al. (1970) replaced the Darcy equation by the Brinkman equation for the internal flow field.
Neale et al. (1973) generalized this solution, using a hydrodynamic spherical cell model, to address
the problem of flow relative to a swarm of permeable spheres. They also compared the hydro-
dynamic resistance of porous spheres calculated from theories based on the Darcy and Brinkman
equations. For low-porosity spheres, these predicted resistances are so close that they could not be
distinguished experimentally. However, the hydrodynamic resistance of high-porosity spheres
calculated from the Brinkman equation is significantly lower than that obtained from the Darcy
equation. Adler (1981) calculated streamlines in and around spherical porous particle, using the
velocity field obtained by Neale et al. (1973). Jones (1973) used the Darcy equation to solve the
problem of creeping flow around a porous spherical particle containing a rigid concentric
spherical core. Haber and Mauri (1983) solved the similar problem when employing the Brinkman
equation. The experimental data of Matsumoto and Suganuma (1977) on settling velocity of steel
wool porous spheres was shown to be in excellent agreement with the theoretical predictions of
Ooms et al. (1970) for a wide range of the porosities used. On the other hand, calculations of
Sutherland and Tan (1970) fitted only the data for spheres with relatively low-porosity. Nan-
dakumar and Masliyah (1982) studied numerically the flow field inside and around an isolated
porous sphere in the range of intermediate Reynolds numbers using the Brinkman equation for
the internal flow field. The computed hydrodynamic resistances were found to agree with the
experiments on settling of porous spheres, machined from semi-rigid plastic foam (Masliyah and
Polikar, 1980). In a more recent work Feng and Michaelides (1998) treated this problem using the
Darcy law.

In the engineering practice and environment, porous particles often have geometrical shapes,
which differ significantly from spherical. The simplest geometry allowing one to study the effect
shape of the permeable particles on their settling velocity and drag resistance is spheroidal. We are
not aware of any investigations that deal with motion of such particles. The present paper is aimed
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to investigate analytically the flow past and within permeable spheroids and determine the hy-
drodynamic resistance experienced by such particles. We first determine the drag resistance of a
permeable oblate spheroidal particle held stationary in a uniform creeping flow. Then the treat-
ment is extended to the comparable prolate spheroidal particle.

2. Problem formulation for an oblate spheroid

Consider creeping flow past and within an oblate permeable spheroid

q2

a2
þ z2

b2
¼ 1; ð1Þ

where a and b are the spheroid major and the minor semi-axes, respectively, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and x, y

and z are the Cartesian coordinates. The undisturbed flow velocity U is directed parallel to the
axis of revolution of the spheroid (see Fig. 1a), which is held stationary while the fluid streams
past and within it.

Outside the spheroid the velocity field is described by the Stokes and continuity equations,
respectively,

lr2u ¼ rp
r � u ¼ 0

�
outside the spheroid; ð2Þ; ð3Þ

where l is the fluid viscosity. The equations for the fluid motion within the porous spheroid of
permeability k are the Darcy law and the fluid continuity equation:

� l
k
buu ¼ rbpp

r � buu ¼ 0

)
inside the spheroid: ð4Þ; ð5Þ

Appropriate for the solution of the problem are oblate spheroidal coordinates ðn; g;uÞ (Happel
and Brenner, 1983):

q ¼ c cosh n sin g; z ¼ c sinh n cos g; ð6Þ
where

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2

p
; 06 n < 1; 06 g6 p: ð7Þ

These coordinates constitute a right-handed orthogonal, curvilinear coordinate system with the
following metric coefficients:

h ¼ h1 ¼ h2 ¼ 1=cðcosh2 n � sin2 gÞ1=2;
h3 ¼ 1=c cosh n sin g:

ð8Þ

The coordinate surfaces n ¼ const constitute a family of confocal oblate spheroidal surfaces de-
fined by Eq. (1) (see Fig. 1a). The focal circle lies in the plane z ¼ 0 and corresponds to the circle
q ¼ c. The coordinate surfaces g ¼ const define a family of confocal hyperboloids of revolution
with o� z being their axis of rotation. 0 < g < p=2 correspond to the region z > 0, whereas values
of p=2 < g < p belong to the region z < 0. For more details on properties of this coordinate
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Fig. 1. (a) Oblate spheroid in a uniform flow. Spheroidal coordinate system. (b) Prolate spheroid in a uniform flow.
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system, the reader is referred to the book by Happel and Brenner (1983). We designate the particle
surface by n ¼ n0. Then, one has from Eqs. (1), (6) and (7)

n0 ¼
1

2
ln
aþ b
a� b

: ð9Þ

The limiting case of a sphere is obtained by setting n0 ! 1. Large distances from the origin are
equivalent to large values of n, i.e. n ! 1 as r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þ z2

p
! 1. Now, for brevity, we put

k ¼ sinh n; f ¼ cos g: ð10Þ

With this substitutions we have, from Eq. (6),

q ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
; z ¼ ckf: ð11Þ

The variables k and f range over the values 06 k < 1, �16 f6 1. The following relations ob-
tained from Eq. (10) prove useful in the sequel:

o

on
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p o

ok
;

o

og
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
o

of
: ð12Þ

Using Eqs. (9) and (10), one may express k0, corresponding to the particle surface, in terms of
the basic dimensions of the spheroid, a and b, as

k0 ¼
b
c
¼ a

b

� �2
	

� 1


�1=2

: ð13Þ

Eqs. (2), (3) and (4), (5) may now be rewritten in terms of the Stokes stream functions, w and bww, as
follows (Happel and Brenner, 1983):

E4w ¼ 0; ð14Þ

E2bww ¼ 0; ð15Þ

where E4 ¼ E2ðE2Þ and the operator E2 is

E2 ¼ 1

c2ðk2 þ f2Þ
ðk2

	
þ 1Þ o2

ok2
þ ð1� f2Þ o2

of2



: ð16Þ

Using Eqs. (2), (6), (10) and (12), one may establish the relations between the pressure and the
stream function for the external flow, as follows:ffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ 1
p op

ok
¼ l

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
o

of
ðE2wÞ;ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f2
q

op
of

¼ � l
q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p o

ok
ðE2wÞ:

ð17Þ
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Using Eqs. (6), (10) and (15), one rewrites Eq. (4) for the internal flow in the following form:ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p obpp
ok

¼ � l
kq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
obww
of

;ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� f2

q
obpp
of

¼ l
kq

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ 1

p obww
ok

:

ð18Þ

The boundary conditions for the stream functions are formulated as follows: Far from the
spheroid, the flow is uniform in the negative z-direction. According to Eq. (11), the boundary
condition at infinity is

w ! 1

2
Uc2ðk2 þ 1Þð1� f2Þ as k ! 1: ð19Þ

We look for a solution, which describes the limiting case of flow past and within a porous sphere,
where the stream function is finite as r ! 0. Therefore, the solution in the interior is required to
reproduce the known solution of Joseph and Tao (1964) and Sutherland and Tan (1970):bwwðk; fÞ ! bwwsðr; fÞ ¼

3Uk
4a2 þ 6k

q2 as k0 ! 1: ð20Þ

The normal velocity component is required to be continuous at the boundary of the spheroid

owðk; fÞ
of

����
k0

¼ obwwðk; fÞ
of

�����
k0

: ð21Þ

It follows from this condition that the stream function is continuous at the boundary. The tan-
gential velocity component has also this property (Sutherland and Tan, 1970)

owðk; fÞ
ok

����
k0

¼ obwwðk; fÞ
ok

�����
k0

: ð22Þ

One more condition is required to complete the formulation of the problem. Note that no re-
striction can be imposed at the boundary on the shear stress because the Darcy flow does not
possess this quantity. However, there always exists a point f at the boundary of any permeable
body where the tangential velocity component vanishes. For our spheroidal particle, this point is
the frontal symmetry point f (see Fig. 1a). Along the streamline, going through the frontal point,
the flow may be considered potential. The situation is quite similar to that occurring in flows past
impermeable bodies in the vicinity of a stagnation point. Hence, the pressure has to be continuous
at the frontal point, since flow inertia is neglected in Eqs. (2) and (4). Therefore, we use this feature
as our last boundary condition,

pðk; 1Þjk0 ¼ bppðk; 1Þjk0 : ð23Þ

2.1. Discussion of the model

When a viscous fluid flows over the surface of a porous body, the effects of viscous shear can
penetrate into the porous medium to form a boundary layer region adjacent to the interface
(Beavers and Joseph, 1967). The Darcy law––Eq. (4), is not generally compatible with the exis-
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tence of such a region, because no stress term is associated with this equation. The Darcy equation
is considered appropriate only for low-porosity systems, wherein the thickness of the internal
boundary layer is negligible. For highly porous materials the effect of the boundary layer may be
significant. Because of this, the boundary condition of Eq. (22) is used in conjunction with Darcy�s
law only for low-porosity systems (Sutherland and Tan, 1970).

An alternative approach is to employ Brinkman�s extension of the Darcy equation (which in-
cludes the viscous stress), as did Ooms et al. (1970) and Neale et al. (1973) to examine the flow
through a porous sphere. In this case, the boundary condition of Eq. (22) is obviously applicable
to materials of any porosity. An additional boundary condition, namely, the shear stress conti-
nuity at the boundary of the sphere, is also invoked to complete the formulation of the problem
(19)–(23).

The particle porosity affects its hydrodynamic resistance. This is described in terms of the
following dimensionless parameters:

X ¼ Fz
Fzim

ð24Þ

which is the ratio of resistances experienced by permeable and impermeable particles of the same
shape, and the Brinkman parameter

b ¼ lffiffiffi
k

p ; ð25Þ

where l is a characteristic particle dimension. For a sphere, l is equal to its radius. For a spheroid,
it is equal to its equatorial radius, such that for an oblate spheroid (1) l ¼ a and for a prolate
spheroid (see below Section 4) l ¼ b. This parameter characterizes the relative effect of particle
permeability on X.

Neale et al. (1973) compared the resistances experienced by a permeable sphere calculated by
the use of the Brinkman equation and from the Darcy equation, both employed together with
boundary condition of Eq. (22). These two models give asymptotically identical results when
b ! 1. For permeable spheres characterized by 5 < b < 20, the models predict 0:764 < X <
0:946 and 0:943 < X < 0:996, respectively. In particular, the difference between these predictions
exceeds 10% for b < 10. An experimental verification of these predictions has been done by
Matsumoto and Suganuma (1977) for porous spheres made from steel wool. It was found that for
10 < b < 200 the experimental values of X agree with both theories, namely, the difference be-
tween the two theoretical predictions in this interval of b is less than the error of measurements.
For 5 < b < 10, calculations based on the Brinkman equation appear preferable. Thus, the dis-
crepancy between these two theories is considerable only for particles with b < 10.

A modified boundary condition was suggested on the tangential velocity at the interface, to be
used in conjunction with Darcy�s law, which is the so-called slip boundary condition (Beavers and
Joseph, 1967):

oux
oy

�
� a
k1=2

ðux � buuxÞ

����

y¼0

¼ 0; ð26Þ

where y is the coordinate normal to the flat surface coinciding with the x-axis and separating the
fluid in the channel and the porous channel�s wall. Here ux is the external fluid velocity and buux is

P. Vainshtein et al. / International Journal of Multiphase Flow 28 (2002) 1945–1963 1951



the internal velocity determined from Darcy�s law. The quantity a is an empirical dimensionless
parameter. For small k this condition approaches asymptotically the no-slip condition, ux ¼ 0, as
also does condition of Eq. (22). Saffman (1971) derived from statistical arguments a boundary
condition for the average velocity at the interface of the flat boundary. This condition has the
form of Eq. (26) wherein, however, buux is negligible up to the leading order of the parameter
k1=2=y � 1. His derivations use the condition of fluid pressure continuity across the surface, which
is valid both for the flat and spherical boundary. Note that expression (26), with buux ¼ 0 and a ¼ 1
may be derived from the exact solution of flow past and within the porous sphere based on the
Brinkman equation (Neale et al., 1973; Haber and Mauri, 1983). However, Saffman�s simplifi-
cation of Eq. (26) is inapplicable to the boundary of an arbitrary shape, since, as it is demon-
strated below, the pressure is not continuous across the boundary of a general shape. The
generalization of boundary condition by Beavers and Joseph (1967) implies that aðux � buuxÞ=k1=2 is
proportional to the shear stress at the surface. It was used in studies concerning the flow past
spherical shells (Jones, 1973) and shear flow past porous particles (Nir, 1976). Generally, repre-
sentation (26) cannot be directly used as a boundary condition, because the parameter a depends
on the structure of the porous material and the shape of the body (Beavers and Joseph, 1967;
Beavers et al., 1970; Taylor, 1971; Sahraoui and Kaviany, 1992).

The value of parameter a has been experimentally determined for the flow in a channel with a
permeable wall (Beavers and Joseph, 1967; Beavers et al., 1970). Beavers and Joseph (1967)
conducted experiments with several porous metals and axolites (compact granular materials)––to
determine a. Their experiments yielded a ¼ 0:1 for two axolites and a ¼ 0:8, 1.5 and 4 for three
metals. Beavers et al. (1970) performed experiments, using an improved apparatus and instru-
mentation, with a metal made of metallic fibers (specifically, nickel) to confirm that a ¼ 0:1.
Taylor (1971) investigated experimentally and theoretically the flow past a model porous me-
dium––a plate with deep rectangular grooves aligned with the flow––and found that a has a
minimum of 1.3 and increases several times beyond this value as the walls between the grooves
become thinner. Sahraoui and Kaviany (1992) investigated numerically the flow past arrays of
circular cylinders and found that for a square array a increases from 1.2 to 4 as the porosity of the
array increases. They also showed that a may be as low as 0.4 when cylinders in the outermost row
are not aligned. Summarizing, one can state that a may vary by at least a factor of 10, depending
on the geometry and the porous material�s structure.

In the present study, we use Darcy�s law together with the boundary condition of Eq. (22) to
obtain a closed-form analytical solution of the problem. Although both the Stokes and the
Brinkman equations are separable in the spheroidal coordinate system, employment of the
Brinkman model in our simple analytical method leads to much more involved calculations re-
sulting from the higher order of this equation.

Some comments are also in order on the boundary condition given by Eq. (23). Of course, when
considering the Brinkman equation, the correct boundary condition to be used in place of (23) at
the boundary of a permeable spheroid is continuity of the normal stress, which includes both the
hydrostatic pressure and the viscous terms (Haber and Mauri, 1983). Note that continuity of the
pressure at the frontal point of the spheroid is, however, an inherent peculiarity of the potential
nature of the flow in this region. The solution based on the Darcy equation is unable to describe
the flow structure within a porous layer of thickness Oðb�1Þ adjacent to the interface, where the
viscous stresses are significant. Outside this internal layer, the viscous stress is insignificant. As
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such, one cannot use the condition of continuity of the normal stresses at the surface of the
spheroid. We employ continuity of the pressure only at the frontal point of the spheroid to close
the problem mathematically, as will be shown below. This approach is justified for low-porosity
particles, i.e., large b.

Since the fluid is considered incompressible, the internal and external pressure distributions
along the interface (bppðk0; fÞ, pðk0; fÞ) are determined by the corresponding velocity distributions.
That is why these functions along the particle boundary are generally different. The pressure
distribution across the curved surface of the spheroid is generally not continuous. Indeed, the fluid
pressure distribution, pðk0; fÞ, is determined by the vorticity, E2w (Eq. (17)). When the Brinkman
equation is used, bppðk0; fÞ is determined by the vorticity and the volumetric force lbuu=k. In our case,
the Darcy equation is employed; hence bppðk0; fÞ is determined by the latter force only (Eq. (18)).

In the particular case of flow past and within a permeable sphere, discussed below, the internal
and external pressure distributions with respect to the meridian angle turn out to be identical (see
also Joseph and Tao, 1964; Sutherland and Tan, 1970; Ooms et al., 1970; Neale et al., 1973). This
identity apparently occurs due to a specific symmetry of the spherical geometry. When the
Brinkman equation is used, the normal viscous stress distributions are identical as well. Therefore,
the boundary condition of pressure continuity at the sphere surface, used by Ooms et al. (1970)
and Neale et al. (1973), turns out to be equivalent to the condition of continuity of the normal
stresses. Joseph and Tao (1964), Sutherland and Tan (1970) and Feng and Michaelides (1998)
formulated continuity of pressure at the surface of a porous sphere as a boundary condition, when
employing the Darcy equation. Due to peculiarity of the spherical geometry mentioned above,
this condition is equivalent to pressure continuity at the sphere�s frontal point, as mentioned
above. However, our condition is less restrictive, since it allows one to employ the Darcy equation
when calculating flows past and within porous particles of non-spherical form.

3. Solution of the problem and results

Condition of Eq. (19) suggests a trial solution of Eqs. (14) and (16) in the form

w ¼ ð1� f2ÞgðkÞ; ð27Þ
where gðkÞ is a function to be determined. Upon substitution of (27) into Eq. (16), one obtains

E2w ¼ ð1� f2Þ
c2ðk2 þ f2Þ

GðkÞ; ð28Þ

where we have set

GðkÞ ¼ ðk2 þ 1Þg00ðkÞ � 2gðkÞ: ð29Þ
A second application of the operator E2 to Eq. (28) gives

E4w ¼ ðk2 þ 1Þð1� f2Þ
c2ðk2 þ f2Þ3

½4ðG� kG0Þ þ ðk2 þ f2ÞG00�: ð30Þ

To satisfy Eq. (14) the term in square brackets of (30) must vanish. However, as G depends only
on k, this can occur only if the relations G00 ¼ 0 and G� kG0 ¼ 0 are simultaneously satisfied: This
results in the following solution for the stream function (Happel and Brenner, 1983):
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w ¼ ð1� f2Þ
�
� 1

2
C1k þ 1

2
C2½k � ðk2 þ 1Þarccotk� þ C3ðk2 þ 1Þ

�
: ð31Þ

The part of the preceding solution involving an arbitrary constant C1 is a solution of E4w ¼ 0. The
remainder of the solution involving the constants C2 and C3 satisfies E2w ¼ 0 (Happel and
Brenner, 1983), thereby resulting in G ¼ 0 (see Eq. (28)). We seek a solution of Eq. (15) for bww in
the form (27) as well. In view of the above considerations this solution has a form

bww ¼ ð1� f2Þ 1

2
A2½k

�
� ðk2 þ 1Þarccotk� þ A3ðk2 þ 1Þ

�
; ð32Þ

where A2 and A3 are arbitrary constants.
Using Eq. (31), one may rewrite Eq. (17) for the pressure in the external region as

op
ok

¼ � lC1

c3ðk2 þ 1Þ
o

of
ð1� f2Þk
k2 þ f2

� 

;

op
of

¼ � lC1

c3
o

ok
k

k2 þ f2

� 

:

ð33Þ

Solution of Eq. (33) is

p ¼ lC1

c3
f

k2 þ f2
þ p1; ð34Þ

where p1 is the uniform pressure at infinity (k ! 1). Using Eq. (32), one may rewrite the
equations, Eq. (18) for the pressure in the internal region as

obpp
ok

¼ 2fl
kc

1

2
A2

k

k2 þ 1

	�
� arccotk



þ A3

�
;

obpp
of

¼ l
kc

A2½1f � karccotk� þ 2A3kg:
ð35Þ

Solution of Eq. (35) is

bpp ¼ 2lf
kc

1

2
A2½1

�
� karccotk� þ A3k

�
þ p1; ð36Þ

where due to the anti-symmetry of the pressure distribution about f ¼ 0, one sets as p1 the
constant of integration.

The boundary condition at infinity, Eq. (19), obviously requires that

C3 ¼
1

2
Uc2: ð37Þ

Observing Eq. (11), one concludes that condition (20) requires that in Eq. (32)

A2 ¼ 0: ð38Þ

Now, in order to satisfy the required set of boundary conditions, stipulated in Eqs. (21)–(23) the
other arbitrary constants in (31) and (32) must be
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C1 ¼
2Uc4

k
k0ðk2

0 þ 1Þ
Da

; C2 ¼ �Uc4

k
k0ðk4

0 � 1Þ
Da

; A3 ¼ Uc2
1

Da
;

Da ¼
c2

k
½k0 � ðk2

0 � 1Þarccotk0�k0ðk2
0 þ 1Þ þ 2;

ð39Þ

that yields a solution for the velocity fields, which also satisfies condition (20).
Using Eqs. (34), (36) and (39), one obtains the solutions for the pressure at the boundary of the

spheroid corresponding to the external and internal regions, respectively,

p � p1 ¼ 2lcU
k

k0ðk2
0 þ 1Þ
Da

f

k2
0 þ f2

; ð40Þ

bpp � p1 ¼ 2lcU
k

k0

Da
f: ð41Þ

It can be seen that with the exception of the frontal point (f ¼ 1), the external pressure is generally
higher than the internal one. However, for flow past a sphere, k0 ! 1, the external and internal
interfacial pressure distributions are identical (Sutherland and Tan, 1970).

In the limiting case of flow past a circular disk, i.e., when k0 ! 0 one obtains

p � p1 ¼ lcU
k

k0

f
; ð42Þ

bpp � p1 ¼ lcU
k

k0f: ð43Þ

The pressure difference is now most significant. Note that the external pressure tends to infinity
when one approaches the edge of the disk, f ! 0. At the same time, the internal interfacial
pressure approaches zero. Therefore, the difference between the external and internal pressures
increases as one approaches the edge of the disk.

The solution obtained for the internal pressure (see Eqs. (36), (38) and (39)) is found from the
Darcy and continuity equations (see Eqs. (4), (5)). As all solutions of these equations, it obeys the
Laplace�s equation. The corresponding solution for the stream function (see Eqs. (32), (38) and
(39)) satisfies the boundary conditions of Eqs. (21) and (22). Any solution for the pressure field
satisfying continuity condition (40) across the interface will apparently lead to a solution for the
velocity field violating boundary conditions (21) and (22).

Some streamlines derived from Eqs. (31), (32), (38) and (39) are plotted (in the plane z; q) at
b=a ¼ 0:75 in Figs. 2–4 for ba ¼ ak�1=2 ¼ 1, 10, 50 (cf Eq. (25)). It is seen that the higher the
porosity of the medium the closer are the streamlines to straight lines, and the lower the poros-
ity––the more the streamlines outside the spheroid resemble those of the flow past an impermeable
spheroid. Inside the spheroid, the streamlines are always straight lines. This result is clearly seen
from Eqs. (20), (32) and (11), according to which

bww ¼ A3

c2
q2; ð44Þ
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where A3 is defined in Eq. (39). The velocity components are obtained in the form

buuq ¼ 0; buuz ¼ � 2A3

c2
: ð45Þ

Eqs. (45) show that inside the spheroid the fluid moves with a constant velocity directed along the
z-axis. Moreover, it follows from Eqs. (21) and (22), (45) that the tangential velocity component
vanishes near the frontal point, as per our comment made in Section 2.

The streamlines are straight inside the porous spheroidal or spherical particles only when the
Darcy equation is used. On the contrary, when the Brinkman equation is employed these
streamlines are curved (Adler, 1981).

In several applications, it is required to find the flow rate passing through the permeable
particle. This is determined by the limiting streamline, characterized, say, by q ¼ q0, which goes
over the edge of the spheroid. Observation of behavior of streamlines presented in Figs. 2–4 re-
veals that q0 varies from a when b ¼ 0, to zero when b ¼ 1, which agrees with similar result
obtained by Adler (1981) for flow past and within porous sphere. Fig. 5 shows the dependences of
q2
0=a

2 on b2
a for different aspect ratios 1� b=a ¼ 1, 0.5 and 0.25. The ratio q2

0=a
2 is an important

parameter characterizing the efficiency with which a porous particle collects dispersed particles of
much smaller size. This is especially important for the evaluation of aerosol scavenging rates by
falling snowflakes (Pruppacher and Klett, 1978). It is seen that the collision efficiency, as char-
acterized by q2

0=a
2 grows as the aspect ratio diminishes.

Fig. 2. Streamlines around and within an oblate spheroid for ba ¼ 1, b=a ¼ 0:75.
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Using Eq. (37), one may rewrite Eq. (31) as

w ¼ 1

2
Uq2 1

�
� C2

Uc2
arccotk � C1 � C2

Uc2
k

k2 þ 1

�
; ð46Þ

where C1 and C2 are defined in Eq. (39). The corresponding expression for the stream function of
an oblate spheroid translating with a velocity U in the positive z-direction may be obtained by
subtracting qU 2=2 from Eq. (46)

~ww ¼ � 1

2
Uq2 C2

Uc2
arccotk

�
þ C1 � C2

Uc2
k

k2 þ 1

�
: ð47Þ

The force exerted by the fluid on the spheroid can be obtained from the following equation (Payne
and Pell, 1960; Happel and Brenner, 1983):

Fz ¼ 8plc lim
k!1

k ~ww
q2

: ð48Þ

Calculating this limit, substituting C1 from Eq. (39), c from Eq. (7) and using Eq. (13), one obtains
the particle�s hydrodynamic resistance

Fig. 3. Streamlines around and within an oblate spheroid for ba ¼ 10, b=a ¼ 0:75.

P. Vainshtein et al. / International Journal of Multiphase Flow 28 (2002) 1945–1963 1957



Fz ¼ �8plaU
b2
a

b2
a½k0 � ðk2

0 � 1Þarccotk0�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
0 þ 1

q
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2

0 þ 1Þ=k2
0

q : ð49Þ

As ba ! 1 this formula reproduces the resistance of an impermeable spheroid Fzi (see Happel and
Brenner, 1983). Note that the resistance of the oblate spheroid, Fzi, is smaller than that of a sphere
of radius a, Fs ¼ �6plaU . Fig. 6 shows the dependence of Fz=Fs on �bb2 ¼ ab=k for different particle
aspect ratios. It is seen that the resistance increases when the aspect ratio increases. The ratio Fz=Fs
tends to Fzi=Fs as �bb ! 1.

In the case of flow past a sphere, k0 ! 1, one obtains from Eq. (49) the resistance of a per-
meable sphere calculated by Sutherland and Tan (1970). For porous spheres when 10 < ba < 20
their result predicts 0:984 < X < 0:996. Hence, it would appear difficult to distinguish between the
resistances of permeable and impermeable (X ¼ 1) spheres, when ba is within the above interval.
This led Sutherland and Tan (1970) to conclude that an insignificant quantity of fluid will actually
permeate through an isolated particle and it can be treated as an impermeable body. This as-
sertion would be correct if the particle could be considered a sphere. However, the geometry of
porous particles is often not spherical. Therefore, it is of interest to evaluate X from the obtained
results for permeable spheroids. At b=a ¼ 0:25 and the same interval of ba, Eq. (49) predicts
0:851 < X < 0:987. Thus, the effect of permeability on the resistance of oblate spheroids is more
pronounced than that for spheres.

Fig. 4. Streamlines around and within an oblate spheroid for ba ¼ 50, b=a ¼ 0:75.
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3.1. Circular disk

Further, for k0 ¼ b=a � 1 one obtains an expression for the resistance of a permeable disk,
from Eq. (49)

Fz ¼ �16plaU
b2
ab=a

pb2
ab=aþ 1

: ð50Þ

Substituting the expression for ba ¼ ak�1=2 into Eq. (50), one obtains

Fz ¼ �16plaU
ab

pabþ k
: ð51Þ

It is seen from Eq. (51) that the resistance is determined by the parameter �bb ¼
ffiffiffiffiffiffiffiffiffiffi
ab=k

p
, which is the

Brinkman parameter based on the length
ffiffiffiffiffi
ab

p
. It is small for high-porosity disks (small �bb). For

low-porosity disks (large �bb), one should order the limiting procedure to analyze Eqs. (50) and
(51). Ordering the limits such that k � ab � a2, one obtains from Eq. (49) the known expression
for the resistance of an impermeable disk, Fz ¼ �16laU (see Happel and Brenner, 1983). If the
limiting procedure is ordered such that ab � k � a2, then, the resistance of a permeable disk
approaches zero at the rate governed by ab=k in spite of large a2=k.

Fig. 5. Flow past and within an oblate spheroid. Dependences of the relative flow rate through the permeable spheroid

on b2
a, for different aspect ratios: 1� b=a ¼ 1, 2� b=a ¼ 0:5, 3� b=a ¼ 0:25.
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4. Motion of a permeable prolate spheroid

The motion of a porous prolate spheroid parallel to its axis of revolution (Fig. 1b) is calculated
in a manner similar to that employed in the previous sections. The coordinates appropriate to this
problem are prolate spheroidal coordinates, ðn; g;uÞ, which are similar to those given by Eqs. (6)
and (7)

q ¼ c sinh n sin g; z ¼ c cosh n cos g: ð52Þ

For conciseness, we further set

s ¼ cosh n; f ¼ cos g; ð53Þ

so that the surfaces s ¼ const are prolate spheroids. We designate the particular spheroids of
interest by s0. It is shown by Happel and Brenner (1983) that by substituting k ¼ is and c ¼ �ic
in the relations already obtained for an oblate spheroid, k0, one obtains the solution of the
analogous problem for the prolate spheroid, s0. Note that in Fig. 1b the polar and equatorial radii
are a and b, respectively, so that the meanings of a and b are interchanged. In both cases a is the
longest of the two semi-axes.

Fig. 6. The dependence of Fz=Fs on �bb2 ¼ ab=k for different aspect ratios. Curves 1, 2 are calculated from Eq. (49) and

correspond to oblate spheroids: 1––b=a ¼ 0:1, 2––b=a ¼ 0:5; Curves 3, 4 are calculated from Eq. (57) and correspond to

prolate spheroids: 3––a=b ¼ 5, 4––a=b ¼ 20.
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Thus, the solutions for the pressure at the boundary of the prolate spheroid corresponding to
the external and internal regions as obtained from Eqs. (40) and (41) as

p � p1 ¼ 2lcU
k

s0ðs20 � 1Þ
Db

f

s20 � f2
; ð54Þ

bpp � p1 ¼ 2lcU
k

s0
Db

f; ð55Þ

respectively. Here c is defined in Eq. (7) and

Db ¼
c2

k
½ðs20 þ 1Þarccoths0 � s0�s0ðs20 � 1Þ þ 2: ð56Þ

It is seen that with exception of the frontal point (f ¼ 1), the external pressure is now smaller than
the internal one. Recall that for flow past a sphere (s0 ! 1) the external and internal pressure
distributions with respect to the meridian angle are identical.

It may be easily shown that Eq. (45) is also fulfilled in the present case, and within the spheroid
the fluid moves with constant velocity directed along the z-axis.

The force on the prolate spheroid is obtained from Eq. (49):

Fz ¼ �8plbU � b2
b

b2
b½ðs20 þ 1Þarccoths0 � s0�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 � 1

p
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs20 � 1Þ=s20

p ; ð57Þ

where bb is defined by Eq. (25) with l ¼ b, i.e. bb ¼ bk�1=2. As bb ! 1 Eq. (57) gives the resistance
of an impermeable prolate spheroid, Fzi. The resistance of the prolate spheroid, Fzi, is larger that
that of a sphere having the same equatorial radius b. Fig. 6 shows the dependence of Fz=Fs on �bb2

for different particle aspect ratios. It is seen that also in the case of a prolate spheroid the resis-
tance increases when the aspect ratio increases. The ratio Fz=Fs tends to Fzi=Fs as �bb ! 1.

Recall that in the case of flow past a sphere (s0 ! 1) Eq. (57) yields the formula for the re-
sistance of a permeable sphere given by Sutherland and Tan (1970). At b=a ¼ 0:25 and
5 < bb < 20 Eq. (57) predicts 0:961 < X < 0:997. Thus, the effect of permeability on the resistance
of prolate spheroids is less than that of spheres where 0:943 < X < 0:996:

4.1. Elongated rod

When the major axis, a, of the prolate spheroid is much greater than its equatorial radius, b, the
spheroid resembles a long thin rod. In this limiting case

s0 ¼ 1

"
� b

a

� 
2
#�1=2

� 1þ 1

2

b
a

� 
2

; ð58Þ

arccoths0 ¼
1

2
ln

so þ 1

s0 � 1
� ln 2þ ln

a
b

� �
; ð59Þ

c � a: ð60Þ
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External and internal pressures are then, from Eqs. (54) and (55),

p � p1 ¼ lUa
k

ðb=aÞ2

b2
b ln 2þ ln

a
b
� 1

2

� 

þ 1

f

1� f2 þ ðb=aÞ2
; ð61Þ

bpp � p1 ¼ lUa
k

1

b2
b ln 2þ ln

a
b
� 1

2

� 

þ 1

f; ð62Þ

respectively. At the frontal point, f ¼ 1, the external and internal pressures are equal, according to
the boundary condition. They approach zero as bb ! 1. As bb ! 0 the pressures approach the
following limiting value:

p � p1 ¼ bpp � p1 ¼ lUa
k

: ð63Þ

It may take place not only at large permeability but also for very thin rods (small b). As f ! 0
Eqs. (61) and (62) yield

p � p1bpp � p1
¼ b

a

� 
2

: ð64Þ

This means that the external pressure is much smaller than the internal one. The pressures tend
to zero in both cases bb ! 1 and bb ! 0.

The force on the rod is, from Eq. (57),

Fz ¼ �4plUa
b2
b

b2
b ln 2þ ln

a
b
� 1

2

� 

þ 1

: ð65Þ

Because of the presence of the logarithmic term, the resistance changes slowly with the ratio
a=b. For large values of Brinkman�s parameter, bb ! 1, one obtains from Eq. (65) the known
formula for an impermeable rod (see Happel and Brenner, 1983). At b=a ¼ 0:05 and 5 < bb < 20
Eq. (65) predicts 0:987 < X < 0:999. Thus, an elongated rod for such bb can be treated as an
impermeable rod. At bb ! 0 Eq. (65) yields

Fz ¼ �4plUa
b2

k
: ð66Þ

Hence, the resistance of a permeable rod becomes small as b2
b ¼ b2=k diminishes. Note that this

can take place not only at high permeability, k, of a medium but also for very thin rods (small b).

5. Conclusions

The creeping flow past and within isolated permeable spheroids has been calculated and dis-
cussed. By assuming that Darcy�s law governs fluid motion within the particle, a simple and
consistent analytical solution is obtained. It has been demonstrated that the hydrodynamic re-
sistance experienced by a spheroid depends significantly on its permeability and aspect ratio. The
resistance experienced by an oblate spheroid is smaller than that of a sphere of the same equa-
torial radius. However, the resistance experienced by a prolate spheroid is larger than that of the

1962 P. Vainshtein et al. / International Journal of Multiphase Flow 28 (2002) 1945–1963



corresponding sphere. The effect of permeability on the resistance of an oblate spheroid is more
pronounced than that of a sphere. This property affects the resistance of a prolate spheroid to a
lesser extent than in case of a sphere. These peculiarities are most clearly seen in the limiting cases
of a permeable circular disk and an elongated rod. The resistance of a low-porosity, but thin
enough disk may approach zero, whereas a high-porosity, but long enough rod may be treated as
impermeable. Thus, the results obtained indicate that the effects of internal flow permeation de-
pend greatly on particle shape and dimensions. The developed formulae are applicable in practical
situations involving in particular aerosol precipitation by falling porous agglomerates.
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